Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.
نویسندگان
چکیده
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate. We find that in the motional averaging regime T2CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2CP∝N-0.44 for aggregates with d = 2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.
منابع مشابه
Wash-free magnetic oligonucleotide probes-based NMR sensor for detecting the Hg ion.
An easily applied and sensitive sensor for the detection of heavy metal ion residues based entirely on magnetic nanoparticle and oligonucleotide was developed. The tool is established on the relaxation of magnetic nanoparticles with different dispersion states. The target analyte, Hg ions, induce the aggregation of the MNP oligonucleotide probes. Accordingly, the light produced by the magnetic ...
متن کاملNMR studies into colloidal stability and magnetic order in fatty acid stabilised aqueous magnetic fluidsw
We report the physico-chemical characterisation of fatty acid stabilised aqueous magnetic fluids, which are ideal systems for studying the influence of nanoparticle aggregation on the emergent magnetic resonance properties of the suspensions. Stable colloids of superparamagnetic magnetite, Fe3O4, nanoparticle clusters in the 80 to 100 nm size range were produced by in situ nanoparticle growth a...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملNMR and spin relaxation in systems with magnetic nanoparticles: effects of size and molecular motion.
To better understand the specifics of nuclear magnetic resonance and spin relaxation in systems with magnetic nanoparticles and test the limits of the outer sphere model for the diffusion-related relaxation, iron oxide nanoparticle suspensions are studied in dependence on the particle concentration and size (5-40 nm). The model is modified to account for aggregation of the particles into cluste...
متن کاملTransverse relaxation of cells labeled with magnetic nanoparticles.
We describe the NMR relaxation properties of magnetically labeled cells. The cells are labeled with magnetic nanoparticles (SPIO, USPIO), which generate susceptibility contrast. The geometry of the labeled cells and the surrounding tissue is considered. We assume that the magnetic nanoparticles accumulate to form a magnetic core of radius RC inside the cell. The correlation time tau, which desc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of magnetism and magnetic materials
دوره 322 20 شماره
صفحات -
تاریخ انتشار 2010